On the Validity of the Imbert-Fick Law: Mathematical Modelling of Eye Pressure Measurement
نویسندگان
چکیده
Ophthalmologists rely on a device known as the Goldmann applanation tonometer to make intraocular pressure (IOP) measurements. It measures the force required to press a flat disc against the cornea to produce a flattened circular region of known area. The IOP is deduced from this force using the Imbert-Fick principle. However, there is scant analytical justification for this analysis. We present a mathematical model of tonometry to investigate the relationship between the pressure derived by tonometry and the IOP. An elementary equilibrium analysis suggests that there is no physical basis for traditional tonometric analysis. Tonometry is modelled using a hollow spherical shell of solid material enclosing an elastic liquid core, with the shell in tension and the core under pressure. The shell is pressed against a rigid flat plane. The solution is found using finite element analysis. The shell material is anisotropic. Values for its elastic constants are obtained from literature except where data are unavailable, when reasonable limits are explored. The results show that the force measured by the Goldmann tonometer depends on the elastic constant values. The relationship between the IOP and the tonometer readings is complex, showing potentially high levels of inaccuracy that depend on IOP.
منابع مشابه
Biomechanical model of human eyeball and its applications
Attempts at the mechanical identification of the human eyeball are often not very effective for two reasons: the material parameters determined by tension tests on corneal and scleral tissue specimens are not sufficiently accurate while numerical models of the eye, integrating material and geometric parameters, are often based on unrealistic assumptions. The examples presented here cover refrac...
متن کاملEvaluating the material parameters of the human cornea in a numerical model.
PURPOSE The values of the biomechanical human eyeball model parameters reported in the literature are still being disputed. The primary motivation behind this work was to predict the material parameters of the cornea through numerical simulations and to assess the applicability of the ubiquitously accepted law of applanation tonometry - the Imbert-Fick equation. METHODS Numerical simulations ...
متن کاملMathematical modelling of an annular photocatalytic reactor for methylene blue degradation under UV light irradiation using rGO-ZnO hybrid
The application of heterogeneous photocatalysis in industrial scale has been hindered by a lack of simple mathematical models that can be easily applied to reactor design and scale-up. This work intends to use a simple mathematical model for predicting methylene blue (MB) degradation in a slurry-annular photocatalytic reactor using zinc oxide (ZnO) hybridized with reduced graphene oxide (rGO)-Z...
متن کاملEffects of Power-Law Distribution and Exponential with Uniform Pressures on Vibration Behavior of Reinforced Cylindrical Shell Made of Functionally Graded Materials under Symmetric Boundary Conditions
In this paper, the influence of the constituent volume fractions by changing the values of the power-law exponent with uniform pressure on the vibration frequencies of reinforced functionally graded cylindrical shells is studied. The FGM shell with ring is developed in accordance to the volume fraction law from two constituents namely stainless steel and nickel. These constituents are graded th...
متن کاملMathematical Modelling of Pulmonary Edema
The excess accumulation of water in lung interstitial or alveolar is called pulmonary edema which is caused by factors that upset the normal Starling balance in micro-circulation. Pulmonary edema disturbs the alveolar gas exchanges which are normally regulated by the respiratory system. Mathematical modelling of pulmonary edema may help to predict the lung conditions and the mechanisms involved...
متن کامل